
Encryption Using Only The DNA Alphabet: ACGT

File Reader to DNA Encrypted-Sequence Writer & DNA Encrypted-Sequence Reader to File Writer

If you do a normal permutation of ACGT with a sub-group of two (2), you get the above results, twelve (12)
permutations. Notice that by definition, there are no duplications of any two letters in any of the sub-groups.
However, by including “pseudo” permutations with duplications in the sub-groups, you get sixteen sub-groups
as follows:

AA AC AG AT CA CC CG CT GA GC GG GT TA TC TG TT

This brings up interesting possibilities, since in binary, four bits represent sixteen decimal numbers 0 through 15
(hexadecimal 0 through F).

There are four (4) Binary Bits per Nibble, which is one-half of a Byte, and the binary key for these binary bits
taken two (2) at a time is:

A = 00, C = 01, G = 10 and T = 11

From the key above, if the decimal value of a Nibble is 15 (hexadecimal F), this is represented in binary as
1111. From the chart below, this would result in the DNA written sequence: TT.

You can therefore see how an original file is made four times larger. However, it can be zipped back down to
about the size of the original file for storage or transmission since it only contains four letters: A, C, G, and T.

By using a string array, DNA$(0) through DNA$(15) to compare with each half-byte nibble of an input file, a
DNA alphabet sequence can be written to an output file as shown below:

 Nibble Value DNA$(0) through DNA$(15)
Decimal Hex Sequence Written
0 0 AA
1 1 AC
2 2 AG
3 3 AT
4 4 CA
5 5 CC
6 6 CG
7 7 CT
8 8 GA
9 9 GC
10 A GG
11 B GT
12 C TA
13 D TC
14 E TG
15 F TT

If you do a normal permutation of ACGT with a sub-group of four (4), you get the above results, twenty-four
(24) permutations - alphabets. Therefore, the specific permutation from the twenty-four permutations above that
is initially used will determine the order ot the sub-group set with two (2) permutations.

By including “pseudo” permutations with duplications in the sub-groups of two (2), you get sixteen different
sets of sub-groups for each of the twenty-four (24) alphabets – even though some of the values in the different
sub-group sets remain the same when comparing one alphabet against another.

Encryption of a file is accomplished by using a pseudo-random generator to change to one of the twenty-four
(24) alphabets for each nibble in the original file. Therefore, for each byte in the original file, two different
alphabets are potentially used – depending on the pseudo-random generator – each having different sub-groups
of two (2). Decryption is accomplished by reversing the procedure.

The pseudo-random generator is seeded by entering a number that has parameters defined in the screen prompt.
The number chosen MUST be remembered in order to decrypt back to the original file. I have modified the
normal sequence of the pseudo-random generator which can be seen when viewing my source code.

In the screen shots on the pages below, notice that when using the program “DNA Encrypted-Sequence Reader to
File Writer”, decryption can be done to the screen instead of to a new output file. The reason for this is to decrypt a text
file – it is not of much use if decrypting any file made up of binary characters such as a zip file, pdf file, jpeg file, etc. If
you decrypt to the screen, I have chosen to use _FULLSCREEN and WIDTH 80, 50 because of a better
rendering and readability of the fonts in the full screen mode.

Entering data: File Reader to DNA Encrypted-Sequence Writer

Encryption in progress: File Reader to DNA Encrypted-Sequence Writer
Note that the Number entered is cleared from the screen

Also note that you can hit <Esc> while in progress to Kill the output file and terminate the program

Encryption done: File Reader to DNA Encrypted-Sequence Writer

Partial results shown in Notepad: File Reader to DNA Encrypted-Sequence Writer

Entering data: DNA Encrypted-Sequence Reader to File Writer

Decryption in progress: DNA Encrypted-Sequence Reader to File Writer
Note that the Number entered is cleared from the screen

Also note that you can hit <Esc> while in progress to Kill the output file and terminate the program

I could have chosen to decrypt to the screen. However, since the original file was a zip file with binary characters, it
would have just been gibberish if viewed on the screen.

Decryption done: DNA Encrypted-Sequence Reader to File Writer

Specifications of the original file: My File.zip

Specifications of the identical decrypted file: Any Named.zip

